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An analytical model which generalizes the equations describing the intensity of galactic cosmic rays

(CR), including both processes, making it applicable in the inner heliosphere (where energy losses

dominate) and outer heliosphere (influenced primarily by convection–diffusion processes) is derived.

By a suitable choice of a parameter, the proposed model turns into two approximations: solution close

to ‘‘force–field’’ model (describing the energy losses of CR in the inner heliosphere) and ‘‘convection–

diffusion’’ equation (giving the reduction of CR intensity in the outer heliosphere). A mathematical

relation between parameters in the proposed model and the modulation parameter F is derived.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The galactic cosmic rays (CR) are an important factor for the
physics of the Earth environment and the interplanetary space.
They have significant influence on the space weather (Kudela et al.,
2000; Dorman, 2004; Belov et al., 2004; Storini, 2006) and also on
the atmosphere and ionosphere (Dorman, 2004; Storini, 2006;
Eroshenko et al., 2009). That is why the modeling of the differential
spectrum of galactic CR is of fundamental importance in modeling
the variety of physical and chemical processes in the atmosphere.

The transport of galactic cosmic rays is often described in
terms of the spherically symmetric transport equation for the
differential number density U(r, E) with the following simplifying
assumptions: a steady state flux and no sources of cosmic rays
(Urch and Gleeson, 1972; cf. Eq. (2.4))
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where r is heliocentric distance and E is the particle kinetic
energy. The solar wind speed is given by V(r), the particle
diffusion coefficient by k(r, E), and atf(E)¼(E+2E0)/(E+E0), with
E0 the rest energy of a particle (atf—troublesome factor (Moraal
and Potgieter, 1982)). The terms in Eq. (1) describe, from left to
right, the convection, diffusion of the particles and energy loss in
the expanding solar wind. Eq. (1) can also be written in a form
(Gleeson, 1971; cf. Eqs. (1) and (2))
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is Compton–Getting coefficient. When the energy loss term in
Eq. (1) is expressed in terms of C, the equation becomes
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2. Approximations to cosmic ray transport equation

Cosmic ray modulation is studied with various approximations
of Eq. (1), which lead to solutions. We examine the most
commonly used analytical approximations: ‘‘force–field (FF)’’
and ‘‘convection–diffusion’’ solutions for galactic cosmic ray
particles. The force–field approximation describes the modulation
as energy losses, while the convection–diffusion approximation
describes it as a reduction in intensity.

The convection–diffusion approximation is obtained by neglect-
ing the third term in Eq. (1) and it can be written as

VU ¼ k
@U

@r
ð5Þ

If we assume that V/k is zero beyond a modulation boundary at
heliocentric distance R, Eq. (5) has the following solution:

Uðr, EÞ ¼ULISðR, PRÞexpð�MÞ, ð6Þ

where ULIS is the differential number density of galactic cosmic
rays at distance r¼R and PR is the particle rigidity at distance R.
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Fig. 1. Local interstellar spectrum DLIS(E+E0) and differential cosmic ray spectrum

D(E) in energy E. Graphical representation of the trigonometric dependence tan t
(Eq. (15)) using a logarithmic scale. The subscript b notes values DLIS(E+E0) for a

given energy E on the outer boundary of the modulation region.
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The quality M is defined as (Gleeson and Axford, 1968; Caballero-
Lopez and Moraal, 2004; cf. Eq. (17))
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The integral M is the modulation function, and it is dimension-
less quantity. For completeness, we mention that the cosmic ray
intensity, D(E), is related to the differential number density U(E)
by relation D(E)¼vU(E)/4p, where v is the particle speed.

Compton–Getting coefficient in energy (or rigidity) in terms of
the omnidirectional distribution function f(P) as a function of particle
rigidity is given by (Forman, 1970; Fisk et al., 1973; cf. Eq. (4))
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The function f represents the number of particles per unit
volume of the phase space averaged over the particle direction.
The distribution function f(P) is related to the cosmic ray intensity
D(E) by

DðEÞ ¼ cðA=ZÞP2f ðPÞ, ð9Þ

where c is the speed of light, and A and Z are mass and charge
numbers, respectively.

The energy variable in Eq. (1) may be changed to rigidity, P

with P¼pc/Z¼A/Z(E(E+2E0))1/2. Then, Eq. (1) or Eq. (4) in terms of
f(P) becomes
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The streaming S can be neglected in Eq. (3) at relatively high
energies, and a simple first order equation in terms of f (P) known
as the force–field (FF) equation is derived (Gleeson and Axford,
1968; Fisk et al., 1973; cf. Eq. (6))
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The solution to Eq. (11) is f(r, P)¼ f0(R, PR(r, P)) along contours
of the characteristic equation

dP

dr
¼

VP

3k
ð12Þ

in (r, P) space; f0(R, PR) is the unmodulated distribution function
determined at radius r¼R, where the modulation is negligibly
small. The rigidity PR¼PR(r; P) is obtained by integrating the
characteristic equation from the initial phase space point (r; P) to
the point (R; PR) at the outer boundary R. If the diffusion
coefficient is separable in the form k¼ vk1(r)k2(P), Eq. (12)
becomes
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where j (r) is called the force–field parameter (or modulation
potential). v¼ v=c¼(Particle speed/speed of light). If k2 (P)�P and
v� 1, the solution reduces to a simple form

PR�P¼j ð14Þ

In this case, the modulation potential j (in GV) becomes a
rigidity (or an energy) loss. Note that an FF approximation can be
applied in the form (Eq. (14)) only to the special case of
relativistic particles (v¼ 1) and rigidity dependence k�P.

Gleeson and Urch (1973) point out that the full FF parameter is
j/k2(P). From Eq. (13), follows that this ratio is expressed by
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For relativistic particles Eq. (15) is written in the form
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Fisk and Axford (1969) and Fisk et al. (1973) showed that the
force–field equation must be satisfied for small ~V ~r= ~k51 and
average modulation level ~V ~r= ~ko1, where ~V , ~r and ~k are charac-
teristic values of the solar wind speed, the heliocentric distance,
and the diffusion coefficient, respectively.
3. Trigonometric parameterization of galactic cosmic ray
spectrum D(E)

The differential intensity spectrum D(E) in Fig. 1 can be presented
by the trigonometric dependence

b¼
lnðDLISðEÞÞ�lnðDðEÞÞ

lnðEþaÞ�lnðEÞ
ð16Þ

where b¼tan t, and DLIS(E) is the local interstellar spectrum. After
some transformations including antilog ones Eq. (16) can be written
in the form

DðEÞ ¼DLISðEÞ 1þ
a
E

� ��b
ð17Þ

where a¼const and b¼tan t¼const. Here, DLIS(E) is defined by

DLISðEÞ ¼ KðEþE0Þ
�g

ð17aÞ

where g is the differential spectral index of the cosmic ray flux and K

is the normalization constant. We consider the expression (Eq. (17))
for the following limits: (1) at energies E5E0 DLIS(E) is approxi-
mately constant and the differential spectrum D(E) as a function of
the energy E is described primarily by the second multiplier in Eq.
(17) as 1þ a

E

� ��b
- Eb

ab when E5a. Therefore, for energies E5E0, the
slope of the spectrum is mainly determined by the parameter b and
the amplitude of D(E) depends on a at fixed b and DLIS. In this case,
D(E) has smaller amplitude for large a and vice-versa: small a
indicates spectrum with larger amplitude and (2) at energies Eba
Eq. (17) gives precisely the unmodulated spectrum DLIS(E) as a
function of the energy E.

Note that when the measurement spectrum D(E) follows a
power law, with some approximation, within the limits of the
error of measurement, i.e. D(E)-DLIS(E) and K is unknown
parameter, the following cases may be considered: (1) a-0 and
b-N; (2) if abE0, then the exponent b is very small positive
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(DLISoD(E) at high energy) or negative value (DLIS4D(E) at high
energy). The discussed situation can arise if (a) the spectrum is
less sensitive to modulation, it is usually observed for alpha
particles and (b) only one or two experimental points with
approximately equal values are measured in an adiabatic range.
Cases (1) and (2) are very sensitive to the initial parameter values.
Sometimes case (2) is observed when the modulation still has
some influence on the high energies of the spectrum (for
example, during high solar activity) and the power index g does
not match the data for these energies quite precisely. Then, b has
very small negative value.

For energies E below �0.4–0.6 GeV, an adiabatic cooling is
essential and theoretical models predict the particle spectrum
D(E)�E. This effect is demonstrated in the framework of the
force–field model. Urch and Gleeson (1972a), assuming a mono-
energetic galactic spectrum, have shown the energy spectrum
D(E) have a form D(E)�E at Eo200 MeV. Experimentally,
Kecskemety et al. (2001) found that in an energy range
10–100 MeV, the dominant part of the heliospheric modulation
mechanisms provide spectrum slope nsl.E1.2, during other time
periods different processes lead to nsl.E0.9, and sometimes weak
(nsl.E0.5) or stronger (nsl.E1.7) modulation of galactic cosmic
rays. Generally, the index of galactic CR spectrum in the adiabatic
range below 300–400 MeV depends on many parameters of
interplanetary medium, which determine the modulation: the
diffusion coefficient, the spectrum of magnetic irregularities of
the interplanetary magnetic field, etc. The different combinations
from their values lead to spectrum slope with an index between
0.5 and �2.0 for the Earth (Kecskemety et al., 2001).

In the research range 0.02 MeV–100 GeV, the model equation
Eq. (17) is a strictly convex function. But a strictly convex real
function has a unique minimizer and the solution is reached
when the gradient vanishes. Therefore, if we know g we can
obtain the range of parameter values a provided that the observed
cosmic ray spectrum has maximum between 0.2 and 0.7 GeV and
the optimal solutions of the parameter b, due to its physical
interpretation are in the interval 0.6–1.9. The range of parameter
values a is obtained by the expression

a¼ gEmax:

g�bð1þE0=Emax:Þ
ð18Þ

Emax. is the energy at which the function D(E) reaches the
highest value.
4. Least square method for well-posed inverse problem

The function (Eq. (17)) relates the values of model parameters
a, b and K (in case that K is given as an unknown one) to the
results D(E) of the measurements. In this case, the values of
measured quantities are given and the theoretical relationship
(Eq. (17)) is used in order for an information to be obtained on the
values of the set of parameters. Therefore, we are solving an
‘inverse problem.’ Inverse problems can be ill- or well-posed.
According to Hadamard (1923), a problem is called well-posed
(or correctly-set) if
a.
 it has a solution,

b.
 the solution is unique,

c.
 the solution depends continuously on the data and the

parameters (the stability criterion).

If one of these conditions is not satisfied, the problem is called
ill-posed. Neither existence nor uniqueness of a solution to an
inverse problem is guaranteed (Engl and K€ugler, 2005).
The correct modeling of a physically relevant problem leads to
a well-posed problem (Engl, 2005), so one can easily prove that
the problem for the nonlinear Eq. (17) is well-posed. The meaning
of (a) is clear: the existence of a solution for an inverse problem
(Eq. (17)) is assured by physical and mathematical reasoning.
Also, it can be shown that any small changes in parameters a, b
(and K) will not affect the results D(E), using Cauchy’s definition
for a limit of a function. Then, since the solution depends
continuously on data and parameters, we do not have to worry
about small errors in measurement producing large errors in our
predictions. Because the model function (Eq. (17)) is strictly
convex, it has a unique minimizer, i.e. a unique solution.
(In Appendix A, it is shown that if a is constant, then Eq. (17)
has a unique solution for E)a.) With this we have proved that the
inverse nonlinear problem (Eq. (17)) is well-posed. In this case,
we can use Levenberg–Marquardt (LM) algorithm. This method is
adjusted to well-posed problems, since its convergence analysis
relies on the assumption that the derivative of the nonlinear
operator is continuously invertible near the exact solution, which
irrevocably fails to hold for ill-posed problems (Hanke, 2010;
Kelley, 1999).

In practical inverse problems, due to errors in the measure-
ments, one never has exact data. In this case, Engl and K€ugler
(2005) note that if the ‘‘deviation from the exact data is small,
algorithm developed for well-posed problem can fail in case of a
violation of the third Hadamard condition if it does not address
the instability, since data as well as rounding-off the errors may
then be amplified by an arbitrarily large factor’’. Fortunately, an
LM is fairly stable method and it is widely recognized as the most
efficient one in the sense of realization accuracy (Sperduti and
Starita, 1993). An LM algorithm works well and the solution of the
inverse problem is efficient and robust, but this method is very
sensitive to the initial network weights and it does not consider
outliers. In this case, more robust methods should be used.

An LM is a method used to solve non-linear least-squares
problems that minimizes the fitting function F(h)¼Si[y(i)� f(x(i),
h)]2. In this expression, F(h) is the sum of squares (this function is
called an object function), h is the vector of the fitted parameters,
y(i) is the observed values and f(x(i), h) is the fitting function of a
given quantity x(i) and the fitted parameters h, where i indexes the
data points. If measurement points have different uncertainties, the
objective function is computed by the weighted sum of squared
errors, i.e. F(h)¼Sioi[y(i)� f(x(i), h)]2, where oi is a weighting factor.
Detailed information about the weighted least squares can be found
in NIST/SEMATECH e-Handbook of Statistical Methods (2003).

If the errors in the measurements are statistically independent and
Gaussian distributed, then the least square parameter estimation is
identical to the maximum likelihood (ML) parameter estimation. In
this case, a chi-square distribution can be used to test the goodness of
the fit. An ML method is considered to have more desirable
mathematical and optimality properties than the least squares
method: (1) the average value of the parameter estimates is theore-
tically exactly equal to the population value (2) generates confidence
bounds and since the estimator has the smallest variance it leads to
the narrowest confidence interval (NIST/SEMATECH e-Handbook of
Statistical Methods, 2003). Maximum likelihood statistic is preferred
when the model is good and if (i) the measurement errors are
normally distributed and either (ii) the fitting function is linear in its
parameters or (iii) the sample size is large enough (Press et al., 1992).
If these conditions are not fulfilled, then one can say that the
covariance matrix is the ‘‘formal covariance matrix of the fit’’ (Press
et al., 1992). In this sense, Press et al. (1992) write that ‘‘w2

minimization is a useful mean for estimating parameters even if
the measurement errors are not normally distributed’’, w2

�F(h).
The data for cosmic ray differential spectra often contains both

systematic and random errors. Systematic errors always either
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overestimate or underestimate the results of measurements,
while random errors both overestimate and underestimate the
results. Correcting of the systematic errors may produce residuals
that are normally distributed. Then, we consider the estimation of
the model parameters using weighted least squares under the
assumption of normality.

The reduced chi-squared (chi-squared divided by the number of
degrees of freedom) w2

n is a quantitative value that describes how
well the model fits the data. When the value w2

n is close to 1, it is an
indicator of a good fit of the model solution to the data. A high value
of w2

n indicates an under-fitting. In the case of an under-fitting, the
bias in the parametric estimation is generally substantial, while the
variance is underestimated. Then, the chi-square statistic can be
used to calculate a p-value by comparing the value of the statistic to
a chi-square distribution, where p is the probability, under the null
hypothesis. If pr0.05, then the null hypothesis H0 (the current
model is correct) is rejected. Usually, p-value under 0.05 shows
either lousy measurements or bad model. For one degree of free-
dom, the critical value associated with p¼0.05 for w2

n is 3.84. Chi-
square values higher than this critical value are associated with a
statistically low probability that H0 is true. w2

n too small indicates an
over-fitting problem. Over-fitting produces parameter estimates
that have large variances both in the parameter estimates and in
the predicted values of the observed data. If variance and bias are
optimized, the results will tend to have an appropriate fit. There are
many ways of doing this and we will discuss them in a future work.
5. Fitting the model equation to experimental data and
theoretical calculations

5.1. Fitting to the experimental data

The IMAX92 (Menn et al., 2000), CAPRICE94 (Boezio et al.,
1999), AMS98 (Alcaraz et al., 2000a, b) and BESS (Shikaze et al.,
Table 1

Fitting parameters K, a, b and w2
n for protons for experiments IMAX 92 (Menn et al.,

2000), CAPRCE 94 (Boezio et al., 1999) and AMS 98 (Alcaraz et al., 2000a).

Experiments IMAX 92 CAPRICE94 AMS98

g 2.61 2.73 2.76

Kgiven 8.030 11.000 15.345

a 0.77970.024 2.27770.008 1.18370.05

b 1.37770.027 1.20670.020 1.09670.028

w2
n 1.90 2.24 0.93

Table 2

Fitting parameters a, b and w2
n for protons for experiments BESS97, BESS98, BESS99, BE

2006).

Experiments BESS97 BESS98

a 0.68170.016 0.84570.017

b 1.20570.002 1.35170.018

w2
n 3.06 2.40

Table 3

Fitting parameters a, b and w2
n for helium nuclei for experiments BESS97, BESS98,

(Yamamoto, 2006).

Experiments BESS97 BESS98

a 5.5E-574E-6 4.34E-471.9E-5

b 17497128 381717

w2
n 0.83 0.53
2007) experimental spectra of galactic protons and BESS (Shikaze
et al., 2007) measurements of alpha particles are fitted to the
model spectrum (Eq. (17)) with an LIS, defined by Eq. (17a). In
Tables 1 and 2 g values are given (obtained from the measure-
ment), the computed parameters a and b and the reduced chi-
squared values w2

n (or w2
n per the degree of freedom) for the

experiments IMAX92 (Menn et al., 2000), CAPRICE94 (Boezio
et al., 1999), AMS98 (Alcaraz et al., 2000a), BESS 1997, 1998,
1999, 2000 and 2002 (Shikaze et al., 2007; Yamamoto, 2006) for
protons. These parameters are shown in Table 3 for alpha
particles for BESS (Shikaze et al., 2007) experimental spectra.
The normalization constants K is chosen to match the modulated
data above 20 GeV (/nucl), where the modulation effect is
negligible. The calculation of the unknown parameters a and b
is performed by Levenberg–Marquardt algorithm (Press et al.,
1992). Since the influence of the systematic errors in measure-
ments is not minimized, the values in Tables 1–3 are only
approximate. However, for high signal-to-noise ratio if the shape
of the model function has not been distorted, the main effect of
systematic errors is to produce an offset, w0

2, in an experimentally
determined w2

exp, i.e. w2
expEw2

rand(yi)+w0
2, where yi is a varying

parameter in a fit to real data (Booth and Hu, 2009).
The values of w2

n are approximately between 1 and 2 for the
experiments: IMAX92 (Menn et al., 2000), CAPRICE94 (Boezio
et al., 1999), AMS98 (Alcaraz et al., 2000a), BESS 1998, 1999 and
2000 for protons and BESS 1999, 2000 and 2002 (Shikaze et al.,
2007; Yamamoto, 2006) for alpha particles. The above estimates
of w2

n represent a good fit. Chi-square values for protons: BESS97
and BESS2002 indicate a more noticeable impact of the systema-
tic errors in the measurements, which lead to an under-fitting.
Table 3 shows that a reduced chi-square value is higher than
critical 3.84 for BESS2002. It means either unmodeled noise or the
estimated statistical errors are too small. In this case, we can put
K in Eq. (17a) as an unknown parameter to achieve a better fit.
Note that when the normalization constant K is taken as an
unknown parameter, its value is determined as an optimal for the
fit. The ‘‘best-fitting’’ parameter K determines the smaller value w2

n

than that which we would have if K was chosen to match the data
at energies at which no modulation occurs. We remark though,
that if there is no systematic error in the measurements, and K is
considered an unknown parameter in Eq. (17), this can lead to an
over-fitting. The problem of how to take into account experi-
mental systematic errors during the inverse problem given by
Eq. (17) will be discussed in our next paper. The reduced chi-
square is o1.0, for experiments BESS97 and BESS98, for helium
nuclei. It shows that the model over-fits data and the number of
SS2000 and BESS2002 (Shikaze et al., 2007), g¼2.732 and K¼13.700 (Yamamoto,

BESS99 BESS2000 BESS2002

1.24070.023 2.70770.027 1.89970.012

1.24270.014 2.04870.011 2.22170.008

2.50 2.26 5.26

BESS99, BESS2000 and BESS2002 (Shikaze et al., 2007), g¼2.699 and K¼0.706

BESS99 BESS2000 BESS2002

0.18670.007 1.19670.019 0.93470.018

1.57770.050 1.77670.017 1.75370.021

0.90 1.14 1.20



10-1 100 101 102

10-1

100

101

102

103

104 =1.0 GV
=0.75 GV
= 0. 55 GV
= 0.4 GV

E , GeV

D
 (
E

),
 p

ar
tic

le
 /(

 m
2.

sr
.s

.G
eV

 )

Fig. 2. Modeled D(E) spectra of galactic protons with Burgers’ LIS (Eq. (21)) for

modulation levels j¼0.4, 0.55, 0.7 and 1.0 GV.

10-2

10-1

100

101

102

103
= 1.0 GV
= 0.7 GV
= 0. 55GV
= 0.4 GV

(E
), 

pa
rti

cl
e 

/( 
m

2.
sr

.s.
G

eV
 )

M. Buchvarova et al. / Planetary and Space Science 59 (2011) 355–363 359
adjustable parameters are higher. Then, a more robust approach is
required.

In the computation, our goal was to extract b with value
between 0.6 and 2, which has physical meaning for energies E5a.
Sometimes the model equation (Eq. (17)) fits the experimental
measurements well without to reflect the physics of the data.
Usually, it is observed when the experimental spectrum D(E)
follows a power law, with some approximation, within the limits
of the error of measurement, i.e. D(E)-DLIS and a-0 (see BESS97
and BESS98 in Table 3). Also, if K is an unknown parameter in
Eq. (17) its value is necessary only for description of the
measurement and it has no physical significance (similarly to
the parameters a and b when D(E)-DLIS). Generally, in these
cases, calculated parameters have no physical meaning and they
can be used only as mathematical estimates in the calculation to
which the observed spectrum is applied.

5.2. Fitting to numerical solution of cosmic ray transport equation

The received proton spectra from a time dependent, two-
dimensional stochastic simulation model of galactic CR propaga-
tion in the heliosphere (developed by Bobik et al. (2006)) for the
Earth and the outer planets are fitted to Eq. (17). On the fit, the
standard deviation for protons is 1% for the Earth and leads to
1.5% for Neptune when we use the power LIS (Eq. (17a)) in the
model Eq. (17); g¼2.75.

Exact values K, a and b are obtained for Earth and outer planets
by the algorithm that combines the rapid local convergence of
Newton method with a globally convergent method for non-linear
systems of equations (Press et al., 1992). By inserting three
characteristic spectral points (Ei, Di), one will get three unknowns
K, a and b. The values K, a and b for each planet are given in
Table 4. It is seen that the parameter a decreases with the distance,
while b increases, i.e. the slope of modulated spectrum increase
with the distance. The lower value of a is a result of the decreasing
with the distance modulation, due to adiabatic losses. Actually,
energy losses become smaller and the role of convection–diffusion
process increase with an increasing radial distance. Thus, the slope
of the low energy part of the GCR spectrum increase with the
distance and in the outer heliosphere the differential spectrum
has an exponential, rather than the power law form. In this case,
Eq. (17) is not valid.

5.3. Fitting to FF solutions of cosmic ray transport equation.

Relationship between the model parameters a and b and the

modulation parameter F

Taking into account Eq. (9), the force–field relationship f(r; P)
¼ f0 (R, PR) in terms of intensities D(E) leads to

DðEÞ ¼ ðP=PRÞ
2DLISðEþFÞ ð19Þ

where F¼(eZ/A)j is the energy loss experienced incoming from
distance R. The parameter F has the dimensions of energy. Thus

DðEÞ ¼DLISðEþFÞ
EðEþ2E0Þ

ðEþFÞðEþFþ2E0Þ
ð20Þ
Table 4

Computed parameter values K, a and b by fitting Bobiks’ model (Bobik et al., 2006)

for the Earth and outer planets to Eq. (16) using the power LIS (Eq. (16a)); g¼2.75.

Planet Earth Jupiter Saturn Uranus Neptune

K 16.539 15.162 14.560 14.565 15.187

a 1.740 1.346 0.976 0.532 0.255

b 1.040 1.087 1.158 1.267 1.469
The differential spectra D(E) of galactic protons and alpha
particles are calculated from Eq. (20) at given values of the
modulation potential ^. DLIS(E) is an important factor in an FF
approximation (Eq. (20)), because this model is dependent on the
fixed shape of the LIS. Here, we use the LIS for protons given by
Burger et al. (2000)

DLISðEÞ ¼
1:9� 104PðEÞ�2:78

1þ0:4866PðEÞ�2:51
ð21Þ

This spectrum lies between ‘‘empirically’’ derived and theore-
tically computed LIS in the range 1–10 GeV (Usoskin et al., 2005).
The number ratio between alpha particles and protons in an LIS is
assumed to be 0.05 (Usoskin et al., 2005).

The results from the differential energy spectra D(E) of the
primary protons for four values of modulation parameter:
j¼400, 550, 700 and 1000 MV are shown in Fig. 2. These results
are given also for the helium nuclei in Fig. 3. The calculated
spectra from Eq. (20) are approximated by model Eq. (17) using
Burgers’ LIS (Eq. (21)). The parameters a and b for different values
F are given in Tables 5 and 6 for protons and alpha particles,
respectively. On the fit, the standard deviations between the FF
solutions (Eq. (20)) and the model (Eq. (17)) are �(1–2)% for low
10-1 100 101 102
10-4

10-3

E, GeV

D
 

Fig. 3. Modeled D(E) spectra of galactic helium nuclei with Burgers’ LIS (Eq. (21))

for modulation levels j¼0.4, 0.55, 0.7 and 1.0 GV. The lower depth of modulation

for helium nuclei in comparison with protons is due to their higher rigidity P, for a

given energy E.
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and middle levels of modulation (jo0.8 GV) for protons and
�1% for all modulation levels for alpha particles. The standard
deviations between Eqs. (17) and (20) are determined for w2

nr1.
Therefore, Eq. (17) is good approximation to force–field solution
describing the energy losses of CR in the inner heliosphere.

The expressions given by Eqs. (17) and (20) describe differ-
ential cosmic ray spectra when convection–diffusion effects can
be neglected compared to adiabatic losses. These conditions are
satisfied in the inner heliosphere, ro40 AU and the model spectra
(Eq. (17)) and (Eq. (20)) can be applied to describe galactic cosmic
ray modulation during solar cycle from 1 to �40 AU.

Substituting the expression for D(E) from Eq. (17) in Eq. (20)
and taking the natural logarithm of both sides, one gets

ln DLISðEþE0Þ 1þ
a
E

� ��b� 	
¼ ln DLISðEþFÞ

EðEþ2E0Þ

ðEþFÞðEþFþ2E0Þ

� 	
ð22Þ

For simplicity, we assume that the unmodulated intensity
spectrum is a power law of energy. Then, from the above
expression we get

1þ
a
E

� �b
¼

E

EþE0
þ

F
EþE0

� �g
1þ

F
E

� �
1þ

F
Eþ2E0

� �
ð23Þ

For energies around and above 10 GeV, EbE0 and the term in
the first multiplier on the right E/(E+E0)-1. Then, taking a
logarithm of both sides of Eq. (23) we get

b ln 1þ
a
E

� �
� g ln 1þ

F
EþE0

� �
þ ln 1þ

F
E

� �
þ ln 1þ

F
Eþ2E0

� �

ð24Þ

An FF theory is not precise during periods of high solar activity
(Gleeson and Axford, 1968). Gleeson and Webb (1975) have
obtained for the upper limit of the modulation potential the value
j¼0.75 GV for protons. That is why parameters a and b are given
in Tables 5 and 6 from low to average modulation levels. It is seen
that the value of a varies from 1 to �3 for protons and alpha
particles as a is always bigger than F. For energies Eba Eq. (24)
can be approximated with

b
a
E
� g F
ðEþE0Þ

þ
F
E
þ

F
Eþ2E0

ð25Þ

or

ab� g F
ð1þE0=EÞ

þFþ
F

1þ2E0=E
ð26Þ

For Eba, EbE0 (Tables 5 and 6 show that a4E0), the term
(1+E0/E)-1 and (1+2E0/E)-1. Thus, Eq. (26) becomes

ab� ðgþ2ÞF¼ 3LF, ð27Þ

where L¼L(g)¼(g+2)/3. Since the values of a in the FF model for
low to average levels of modulation are of the order of the rest
Table 5

Fitting parameters a and b for modulation levels F: 0.3, 0.4, 0.5, 0.6, 0.7 and

0.8 GeV for galactic protons.

Parameter F¼0.3 F¼0.4 F¼0.5 F¼0.6 F¼0.7 F¼0.8

a 1.446600 1.766995 2.078808 2.372635 2.654086 2.924539

b 0.921775 1.049210 1.153789 1.244398 1.324410 1.396325

Table 6

Fitting parameters a and b for modulation levels F(¼j/2): 0.2, 0.25, 0.3, 0.35, 0.4, 0.4

Paramet. F¼0.2 F¼0.25 F¼0.3

a 1.098153 1.273066 1.442468

b 0.759901 0.847191 0.922559
energy E0, we can consider Eq. (25) approximately valid for
energies about and above 15 GeV (aE1.45) at the low level of
modulation (j¼300 MV) and for energies �30 GeV (aE2.92)
and above them at an average level of modulation (j¼800 MV)
for protons. For j¼300 MV, the modulation is �10% at E¼15
GeV, and for j¼800 MV, the modulation is �13% at E¼30 GeV
for protons. Therefore, the modulational parameters a, b and F
still influence the formation of the spectrum for the dicussed
energies. On the other hand, the standard deviation between FF
model and the proposed approximate formula (Eq. (17)) is on the
order of 1–2%, i.e. Eq. (17) almost exactly approximates an FF
solution and the dependence between the modulation potential F
and the parameters a and b will be slightly influenced by the
standard deviations between the two spectrums.

For energies above 10–20 GeV, the value of g is well deter-
mined theoretically (draft standard): gpE2.74 for protons and
gaE2.68 for alpha particles. However, sometimes the experimen-
tal measurements give some deviations from these g values, but
the differences are in very narrow ranges. Therefore, it can be
assumed that L(g)Econst. in Eq. (27). For theoretically derived
power LIS with gp¼2.74 for protons and ga¼2.68 for alpha
particle calculations give us LE1.6. Tables 5 and 6 confirm the
dependence given by Eq. (27) with LE1.618 when the calculated
spectra from Eq. (20) are approximated by model Eq. (17) using
Burgers’ LIS (Eq. (21)) for protons and alpha particles.
6. Cosmic ray spectra approximation (CRSA) model in the
heliosphere

CRSA model generalizes the differential galactic CR spectrum in
the heliosphere for two extreme cases: convection–diffusion and
energy losses. The formula expressed by Eq. (27) can be written as

F�
1

L
ab
3

� �
or b�L

3F
a

� �
ð28Þ

Substitution of the expression for b from Eq. (28) in Eq. (17)
results in the dependence

DðEÞ �DLISðEÞ 1þ
a
E

� ��L3F
a

ð29Þ

Thus, Eq. (6) in terms of the differential intensity D(E) and the
approximation model (Eq. (29)) can be generalized in the form

DðEÞ ¼DLISðEÞQ
�N ð30Þ

where Q and N are dimensionless qualities. Under condition of:
–

5 an
energy losses: Q¼ f(a/E) is only dependent from the energy E.
The exponent N¼ f(F/a) is approximately equal to a constant
for a given F.
–
 convection–diffusion: the exponent N¼M is dependent on an
energy E, while Q is a mathematical constant, also known as
Euler’s number e. If the expression for the modulation function
M (Eq. (7)) is substituted in Eq. (15a), a relationship between
the force–field potential j and the modulation function M is
received

M¼
3j
k2

ð31Þ
d 0.5 GeV for galactic alpha particles.

F¼0.35 F¼0.4 F¼0.45 F¼0.5

1.606970 1.767006 1.922968 2.075121

0.989216 1.049206 1.103899 1.154282
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Then, Eq. (30) can be written as

DðEÞ ¼DLISðEÞ 1þ
ðe�1ÞdmEn

E

� ��3FðL=aÞmðA=Z=k2Þ
n

ð32Þ

Here, m¼(1�n) is an energy loss factor and n is the convection–
diffusion factor. The parameter a¼(e�1)d, where e is an irra-
tional constant equal to 2.71828. The coefficient L is approxi-
mately equal to 1.618.

Eq. (32) is transformed in Eq. (29) or Eq. (17) by substituting
m¼1 (n¼0). When n is equal to 1 (m¼0), the generalized model
(Eq. (32)) has the form given with Eq. (6) in terms of the
differential intensity D(E)¼vU(E)/4p taking into account Eq. (31).
1 GCR spectra in CREME96 (Tylka et al., 1997) are based on the model of

Nymmik et al. (1992). Nymmik et al. (1992, 1996) model quantitatively describes

spectra of electrons and ions with atomic numbers from 1 to 28. CREME96 extends

this model through uranium (atomic number Z¼92).
7. Discussion and conclusion

In this work, a model approximation which generalizes the
differential galactic cosmic ray spectrum in the heliosphere is
proposed. The model parameterizes the spectrum at different
physical conditions, including the most important effects control-
ling the CR intensity like convection–diffusion and energy losses.
An FF formalism is a good approximation for galactic cosmic rays
in the inner heliosphere, but its accuracy decreases towards the
outer heliosphere. On the other hand, convection–diffusion
approximation improves with the radial distance. The reason for
the complementary behavior of these two approximations is that
energy losses are relatively important in the inner heliosphere,
but not in the outer heliosphere (Caballero-Lopez and Moraal,
2004). By a suitable choice of parameters, the proposed model
(Eq. (32)) turns into two approximations: one close to the ‘‘force–
field’’ model (describing the energy losses of CR in the inner
heliosphere) and ‘‘convection–diffusion’’ equation (giving the
reduction of CR intensity in the outer heliosphere).

Eq. (17) (or Eq. (32) with m¼1) describes differential cosmic
ray spectrum, when the convection–diffusion effects can be
neglected compared to adiabatic losses. These conditions are
satisfied in the inner heliosphere, ro40 AU and the model
spectrum (Eq. (17)) can be applied to describe galactic cosmic
ray modulation during the solar cycle from 1 to�40 AU. A
mathematical relation between parameters in the model approx-
imation (Eq. (17)) and the modulation parameter F is derived. It
is important to notice that modulation parameter F is not
advisable (from physical considerations) on short time scales
and during periods of an active Sun. The CRSA model has no such
a problem. The modulation parameters a and b are not limited
between the fixed values. It makes Eq. (17) (or Eq. (32) with m¼1)
more universal and applicable for different time scales and levels
of solar activity. Tables 5 and 6 show that the value of a change in
limits between 1 and 3, and b is about 1 when an FF solution
(Eq. (20)) is approximated by Eq. (17). Therefore, from the values
of a and b, derived from the modulation of the given experimental
spectrum by Eq. (17), we can conclude whether an FF model is
applicable towards the experimental data or not. For example, the
very high values of a and b received for BESS2000 and BESS2002
(Tables 2 and 3) confirm the observed discrepancies between the
measurement data and FF approximation (Shikaze et al., 2007).
Therefore, the proposed model (Eq. (17)) is more flexible to the
data fitting than an FF approximation.

The existing analytical, empirical and semi-empirical models
parameterize the CR spectrum with a definite potential: helio-
spheric potential (O’Brien, 1971), deceleration potential (Badhwar
and O’Neill, 1996) or modulation potential (Nymmik et al., 1996).
The potential can be given in terms of sunspot numbers or in
terms of the intensity of the galactic cosmic ray component
measured with neutron monitoring (O’Brien, 1971). In our model,
parameters are related to the solar-cycle-variation in the GCR
intensity. The value of a increases and b changes very slowly in
the transition from solar minimum to maximum. Generally, the
parameter b is approximately equal to 1 around the Earth’s orbit.
The basic function of our model is to be used in atmospheric and
heliospheric computations during the solar cycle. However, the
model of Nymmik et al. (1992, 1996) or CREME96 (Tylka et al.,
1997)1 relates the solar-cycle variation in cosmic ray intensity to
the observed sunspot number. Because there are detailed sunspot
number predictions, these models can be used to predict galactic
cosmic ray intensity also. The dependence of a and b on the solar
activity parameters (for example, sunspot numbers) will be
discussed in a next paper.

The differential D(E) spectrum (Eq. (17)) of galactic CR is used
for computation of the electron production rate profiles in the
atmospheres and ionospheres for lower, middle and high lati-
tudes in Velinov et al. (2004) and Velinov and Mateev (2008). That
is why it is important the expression for cosmic ray differential
spectrum to be presented in a simple form as Eq. (17) convenient
at ionization computations and this region of applicability to
exceed some limitations of analytically derived model approx-
imations to the transport equation.
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Appendix A

When E5a Eq. (17) has a form

DðEÞ

DLISðEþE0Þ
�

Eb

ab
ðA:1Þ

We construct two solutions with given energy E, T1 and T2,
each of which satisfies Eq. (17) for boundary condition E5a

T1 ¼
Eb1

a1
b1

ðA:2Þ

T2 ¼
Eb2

a2
b2

ðA:3Þ

With the new variables, z¼T1�T2, the governing equation is

z¼
Eb1

a1
b1
�

Eb2

a2
b2

ðA:4Þ

Taking into account that Eq. (A.1) has a unique solution, i.e.
T1–T2¼0 Eq. (A.4) leads to

Eðb1�b2Þ ¼
ða1Þ

b1

ða2Þ
b2

ðA:5Þ

If a is an independent parameter from the energy E then
b1¼b2 and a1¼a2. The converse does not hold i.e. if a1¼a 2 and
b1¼b2, the quantity a is not necessarily to be an independent
parameter from the energy E in Eq. (A.5).
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