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ABSTRACT  

Lasers can significantly advance medical diagnostics and treatment. At high power, they are typically used as cutting 
tools during surgery. For lasers that are used as knifes, radiation wavelengths in the far ultraviolet and in the near 
infrared spectral regions are favored because tissue has high contents of collagen and water. Collagen has an absorption 
peak around 190 nm, while water is in the near infrared around 3,000 nm. Changing the wavelength across the 
absorption peak will result in significant differences in laser tissue interactions. Tunable lasers in the infrared that could 
optimize the laser tissue interaction for ablation and/or coagulation are not available until now besides the Free Electron 
Laser (FEL). Here we demonstrate efficient tissue ablation using a table-top mid-IR laser tunable between 3,000 to 
3,500 nm. A detailed study of the ablation has been conducted in different tissues. Little collateral thermal damage has 
been found at a distance above 10-20 microns from the ablated surface. Furthermore, little mechanical damage could be 
seen in conventional histology and by examination of birefringent activity of the samples using a pair of cross polarizing 
filters. 

Keywords: laser-tissue interaction, near-infrared, laser, ablation, surgery 
 

1. INTRODUCTION  
Over the last decades the introduction of lasers has advanced several medical disciplines and opened completely novel 
treatment opportunities in medical areas such as neurosurgery, cardiology, dentistry, urology, or dermatology [1-4]. The 
procedures and the methods for medical treatment and research take advantage of a wide variety of laser-tissue 
interaction mechanisms, including photothermal, photomechanical and photochemical interactions [4, 5]. Recently, there 
has been increasing interest in the use of lasers in the infrared (IR) region. For this range the penetration depth of the 
radiation changes drastically [6]. Changing the wavelengths of the laser would allow one to fine tune laser tissue 
interactions (penetration depth and radiant energy density), minimizing the collateral heating effects in a tissue specific 
manner. Moreover, the latest solid-state laser technology ensures small and compact design and fiber optic delivery 
options. Hence, these lasers are indispensable for minimally invasive surgery. Currently, there are several commercial IR 
lasers available that have individual (fixed) single wavelength output and thus, their application range is strongly limited 
to specific surgical tasks performed at those specific wavelengths. In other words, some lasers are ideal for tissue cutting 
in fluid-filled spaces, while others for kidney stone fragmentation or coagulation of the tissue etc. [4]. Instead of using 
multiple separate laser units – which is practically impossible – it would be economically and practically efficient to 
combine the many characteristic features each laser system provides into a single compact table-top laser instrument. 
Here we present the results obtained with such a novel laser. 
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Collateral damage from 
the irradiation with the 
laser was determined by 
examining images that 
were captured with 
brightfield and with cross-
polarizing filters. The 
images shown in Figure 4 
are the same samples 
shown in Figure 3 but 
were captured with cross-
polarizing filters. No 
carbonization was seen 
and the loss in 
birefringent activity was 
less than 20 µm (Fig. 4). 
No other signs for thermal 
or mechanical damage 
such as tissue dessication, 
water vapor vacuole 
formation and explosive 
fragmentation could be 
detected. One should note 
that the current examination and judgment is based on fixed cadaveric material, and has been examined with light 
microscopy only. 

 

 
Figure 4. Shown are the dimensions for the ablation crater. The left top panel shows the depth, which increases for 
skin with increasing wavelength but decreases for cartilage. No ablation could be seen at 3,490 nm for cartilage.  The 
left bottom panel shows the width of the ablation crater, which increases for skin with increasing wavelength but 
decreases for cartilage. No ablation could be seen at 3,490 nm for cartilage.  The right top panel shows the cross 
sectional area of the ablation crater. It increases for skin with increasing wavelength but decreases for cartilage. No 
ablation could be seen at 3,490 nm for cartilage.  The right bottom panel shows sum of all cross-sectional areas 
obtained from serial sections of the samples. The volume, which increases fop skin with increasing wavelength but 
decreases for cartilage. No ablation could be seen at 3,490 nm for cartilage. 

 
Figure 5. Images obtained after tissue ablation with 10 single laser pulses delivered at one 
selected site. The samples are the same shown in Figure 3 and were captured with cross-
polarized filters. The top row shows pig-skin and bottom row cartilage from the pig pinna. 
Radiation wavelength was 3,060 nm for A and D, 3,320 nm for B and E, and 3,490 nm for C 
and F. The loss in birefringent activity was almost not detectable, in some view cases less than 
50 µm. No correlation of amount of tissue damage and with radiation wavelength could be 
established. 
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The bone sample held slightly different 
results. With increasing of the number of 
pulses delivered, the depth of the groove 
increased (data not shown). Along the 
ablation grove a thin black line can be 
seen in the left brightfield image, 
indicating the carbonization of the 
organic tissue (Fig. 6, left panel). Next to 
the carbonization line, a small tissue 
layer, about 10-20 µm thick, shows a 
small layer of darker staining (Fig. 6, left 
panel). This is the layer, for which 
thermal damage could be detected. The 
damage could be verified by the loss of 
optical activity as judged from the 
birefringence seen under cross-polarizing 
imaging conditions (Fig 6, right panel). 
 

 

4. DISCUSSION 
A tunable laser in the near infrared has been built and tested that is powerful enough to ablate soft tissue and bone. At 
penetration depths of the radiation less than 10 µm, the ablation was possible with little collateral thermal damage. Our 
initial evaluations of the exposed tissue sections and images with cross-polarizing filters confirmed the finding that 
ablation is possible with minimal collateral damage to the tissue. 

Light microscopy was used to evaluate damages resulting from irradiating the tissue. With this method subtle changes 
will not be detected. Survival experiments are required to allow for damages to develop. On the other hand, thermal 
damages that often occur are minimal with the novel laser instrument. This is true for single pulses and for laser pulses 
presented at fast repetition rates, here 500 Hz. In vivo experiments are necessary to determine longterm damages that 
cannot be seen with light microscopy or that require days or week to develop. 

The ablation crater did not change drastically in size with changing wavelength. Moreover, the ablation crater was 
similar among the tissue types at 3,060 nm radiation wavelength. Differences among the tissues were observed for 
wavelengths with longer penetration depths of the photons into the tissue. In general tissues with an organized collagen 
structure tended to show smaller ablation than loosely connected tissues. 

A limitation of this study is the use of fixed cadaveric tissue. Since the hydration of the tissue is different in vivo and the 
main absorber at the selected wavelength is water, ablation may depend on the hydration of the tissue. Control 
experiments are on the way to establish the changes that occur after euthanizing the animal. Furthermore, experiments 
are on the way to determine whether the novel laser instrument can be used in close proximity to nerve or other neural 
structures. 
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